Titanic

Mon 30 June 2025
pip install scikit-learn
Collecting scikit-learn
  Downloading scikit_learn-1.7.0-cp312-cp312-win_amd64.whl.metadata (14 kB)
Requirement already satisfied: numpy>=1.22.0 in c:\users\hp\miniconda3\envs\py312\lib\site-packages (from scikit-learn) (2.3.1)
Collecting scipy>=1.8.0 (from scikit-learn)
  Downloading scipy-1.16.0-cp312-cp312-win_amd64.whl.metadata (60 kB)
Collecting joblib>=1.2.0 (from scikit-learn)
  Downloading joblib-1.5.1-py3-none-any.whl.metadata (5.6 kB)
Collecting threadpoolctl>=3.1.0 (from scikit-learn)
  Downloading threadpoolctl-3.6.0-py3-none-any.whl.metadata (13 kB)
Downloading scikit_learn-1.7.0-cp312-cp312-win_amd64.whl (10.7 MB)
   ---------------------------------------- 0.0/10.7 MB ? eta -:--:--
   - -------------------------------------- 0.5/10.7 MB 16.4 MB/s eta 0:00:01
   --- ------------------------------------ 1.0/10.7 MB 2.8 MB/s eta 0:00:04
   ---- ----------------------------------- 1.3/10.7 MB 1.9 MB/s eta 0:00:06
   ---- ----------------------------------- 1.3/10.7 MB 1.9 MB/s eta 0:00:06
   ----- ---------------------------------- 1.6/10.7 MB 1.6 MB/s eta 0:00:06
   ------- -------------------------------- 2.1/10.7 MB 1.6 MB/s eta 0:00:06
   -------- ------------------------------- 2.4/10.7 MB 1.5 MB/s eta 0:00:06
   --------- ------------------------------ 2.6/10.7 MB 1.5 MB/s eta 0:00:06
   --------- ------------------------------ 2.6/10.7 MB 1.5 MB/s eta 0:00:06
   ----------- ---------------------------- 3.1/10.7 MB 1.5 MB/s eta 0:00:05
   ------------ --------------------------- 3.4/10.7 MB 1.5 MB/s eta 0:00:05
   ------------- -------------------------- 3.7/10.7 MB 1.5 MB/s eta 0:00:05
   -------------- ------------------------- 3.9/10.7 MB 1.4 MB/s eta 0:00:05
   --------------- ------------------------ 4.2/10.7 MB 1.4 MB/s eta 0:00:05
   ---------------- ----------------------- 4.5/10.7 MB 1.4 MB/s eta 0:00:05
   ----------------- ---------------------- 4.7/10.7 MB 1.4 MB/s eta 0:00:05
   ------------------ --------------------- 5.0/10.7 MB 1.4 MB/s eta 0:00:05
   ------------------- -------------------- 5.2/10.7 MB 1.4 MB/s eta 0:00:04
   -------------------- ------------------- 5.5/10.7 MB 1.3 MB/s eta 0:00:04
   --------------------- ------------------ 5.8/10.7 MB 1.4 MB/s eta 0:00:04
   ---------------------- ----------------- 6.0/10.7 MB 1.4 MB/s eta 0:00:04
   ----------------------- ---------------- 6.3/10.7 MB 1.3 MB/s eta 0:00:04
   ------------------------ --------------- 6.6/10.7 MB 1.3 MB/s eta 0:00:04
   ------------------------- -------------- 6.8/10.7 MB 1.3 MB/s eta 0:00:03
   -------------------------- ------------- 7.1/10.7 MB 1.3 MB/s eta 0:00:03
   --------------------------- ------------ 7.3/10.7 MB 1.3 MB/s eta 0:00:03
   ---------------------------- ----------- 7.6/10.7 MB 1.3 MB/s eta 0:00:03
   ---------------------------- ----------- 7.6/10.7 MB 1.3 MB/s eta 0:00:03
   ------------------------------ --------- 8.1/10.7 MB 1.3 MB/s eta 0:00:02
   ------------------------------ --------- 8.1/10.7 MB 1.3 MB/s eta 0:00:02
   ------------------------------- -------- 8.4/10.7 MB 1.3 MB/s eta 0:00:02
   --------------------------------- ------ 8.9/10.7 MB 1.3 MB/s eta 0:00:02
   ---------------------------------- ----- 9.2/10.7 MB 1.3 MB/s eta 0:00:02
   ----------------------------------- ---- 9.4/10.7 MB 1.3 MB/s eta 0:00:01
   ----------------------------------- ---- 9.4/10.7 MB 1.3 MB/s eta 0:00:01
   ------------------------------------ --- 9.7/10.7 MB 1.3 MB/s eta 0:00:01
   ------------------------------------- -- 10.0/10.7 MB 1.3 MB/s eta 0:00:01
   ---------------------------------------  10.5/10.7 MB 1.3 MB/s eta 0:00:01
   ---------------------------------------- 10.7/10.7 MB 1.3 MB/s eta 0:00:00
Downloading joblib-1.5.1-py3-none-any.whl (307 kB)
Downloading scipy-1.16.0-cp312-cp312-win_amd64.whl (38.4 MB)
   ---------------------------------------- 0.0/38.4 MB ? eta -:--:--
   ---------------------------------------- 0.3/38.4 MB ? eta -:--:--
   ---------------------------------------- 0.3/38.4 MB ? eta -:--:--
    --------------------------------------- 0.5/38.4 MB 1.3 MB/s eta 0:00:30
    --------------------------------------- 0.8/38.4 MB 1.2 MB/s eta 0:00:31
   - -------------------------------------- 1.0/38.4 MB 1.2 MB/s eta 0:00:31
   - -------------------------------------- 1.3/38.4 MB 1.2 MB/s eta 0:00:31
   - -------------------------------------- 1.6/38.4 MB 1.2 MB/s eta 0:00:30
   - -------------------------------------- 1.8/38.4 MB 1.2 MB/s eta 0:00:30
   -- ------------------------------------- 2.1/38.4 MB 1.2 MB/s eta 0:00:30
   -- ------------------------------------- 2.4/38.4 MB 1.2 MB/s eta 0:00:30
   -- ------------------------------------- 2.6/38.4 MB 1.2 MB/s eta 0:00:29
   --- ------------------------------------ 2.9/38.4 MB 1.2 MB/s eta 0:00:29
   --- ------------------------------------ 3.1/38.4 MB 1.2 MB/s eta 0:00:29
   --- ------------------------------------ 3.4/38.4 MB 1.2 MB/s eta 0:00:29
   --- ------------------------------------ 3.7/38.4 MB 1.2 MB/s eta 0:00:29
   ---- ----------------------------------- 3.9/38.4 MB 1.2 MB/s eta 0:00:30
   ---- ----------------------------------- 4.2/38.4 MB 1.2 MB/s eta 0:00:28
   ---- ----------------------------------- 4.5/38.4 MB 1.2 MB/s eta 0:00:28
   ---- ----------------------------------- 4.7/38.4 MB 1.2 MB/s eta 0:00:28
   ----- ---------------------------------- 5.0/38.4 MB 1.2 MB/s eta 0:00:27
   ----- ---------------------------------- 5.2/38.4 MB 1.2 MB/s eta 0:00:28
   ----- ---------------------------------- 5.5/38.4 MB 1.2 MB/s eta 0:00:27
   ------ --------------------------------- 5.8/38.4 MB 1.2 MB/s eta 0:00:28
   ------ --------------------------------- 6.0/38.4 MB 1.2 MB/s eta 0:00:27
   ------ --------------------------------- 6.3/38.4 MB 1.2 MB/s eta 0:00:27
   ------ --------------------------------- 6.6/38.4 MB 1.2 MB/s eta 0:00:26
   ------- -------------------------------- 6.8/38.4 MB 1.2 MB/s eta 0:00:26
   ------- -------------------------------- 7.1/38.4 MB 1.2 MB/s eta 0:00:26
   ------- -------------------------------- 7.3/38.4 MB 1.2 MB/s eta 0:00:26
   ------- -------------------------------- 7.6/38.4 MB 1.2 MB/s eta 0:00:25
   -------- ------------------------------- 7.9/38.4 MB 1.2 MB/s eta 0:00:25
   -------- ------------------------------- 8.1/38.4 MB 1.2 MB/s eta 0:00:25
   -------- ------------------------------- 8.4/38.4 MB 1.2 MB/s eta 0:00:25
   -------- ------------------------------- 8.4/38.4 MB 1.2 MB/s eta 0:00:25
   --------- ------------------------------ 8.9/38.4 MB 1.2 MB/s eta 0:00:24
   --------- ------------------------------ 9.2/38.4 MB 1.2 MB/s eta 0:00:24
   --------- ------------------------------ 9.2/38.4 MB 1.2 MB/s eta 0:00:24
   ---------- ----------------------------- 9.7/38.4 MB 1.2 MB/s eta 0:00:24
   ---------- ----------------------------- 10.0/38.4 MB 1.2 MB/s eta 0:00:23
   ---------- ----------------------------- 10.2/38.4 MB 1.2 MB/s eta 0:00:23
   ---------- ----------------------------- 10.5/38.4 MB 1.2 MB/s eta 0:00:23
   ----------- ---------------------------- 10.7/38.4 MB 1.2 MB/s eta 0:00:23
   ----------- ---------------------------- 11.0/38.4 MB 1.2 MB/s eta 0:00:23
   ----------- ---------------------------- 11.3/38.4 MB 1.2 MB/s eta 0:00:22
   ----------- ---------------------------- 11.3/38.4 MB 1.2 MB/s eta 0:00:22
   ------------ --------------------------- 11.8/38.4 MB 1.2 MB/s eta 0:00:22
   ------------ --------------------------- 12.1/38.4 MB 1.2 MB/s eta 0:00:22
   ------------ --------------------------- 12.3/38.4 MB 1.2 MB/s eta 0:00:22
   ------------- -------------------------- 12.6/38.4 MB 1.2 MB/s eta 0:00:21
   ------------- -------------------------- 12.8/38.4 MB 1.2 MB/s eta 0:00:21
   ------------- -------------------------- 12.8/38.4 MB 1.2 MB/s eta 0:00:21
   ------------- -------------------------- 13.4/38.4 MB 1.2 MB/s eta 0:00:21
   ------------- -------------------------- 13.4/38.4 MB 1.2 MB/s eta 0:00:21
   -------------- ------------------------- 13.6/38.4 MB 1.2 MB/s eta 0:00:21
   -------------- ------------------------- 13.9/38.4 MB 1.2 MB/s eta 0:00:20
   -------------- ------------------------- 14.2/38.4 MB 1.2 MB/s eta 0:00:20
   --------------- ------------------------ 14.4/38.4 MB 1.2 MB/s eta 0:00:20
   --------------- ------------------------ 14.7/38.4 MB 1.2 MB/s eta 0:00:20
   --------------- ------------------------ 14.9/38.4 MB 1.2 MB/s eta 0:00:20
   --------------- ------------------------ 15.2/38.4 MB 1.2 MB/s eta 0:00:19
   ---------------- ----------------------- 15.5/38.4 MB 1.2 MB/s eta 0:00:19
   ---------------- ----------------------- 15.5/38.4 MB 1.2 MB/s eta 0:00:19
   ---------------- ----------------------- 16.0/38.4 MB 1.2 MB/s eta 0:00:19
   ---------------- ----------------------- 16.3/38.4 MB 1.2 MB/s eta 0:00:19
   ----------------- ---------------------- 16.5/38.4 MB 1.2 MB/s eta 0:00:18
   ----------------- ---------------------- 16.8/38.4 MB 1.2 MB/s eta 0:00:18
   ----------------- ---------------------- 17.0/38.4 MB 1.2 MB/s eta 0:00:18
   ------------------ --------------------- 17.3/38.4 MB 1.2 MB/s eta 0:00:18
   ------------------ --------------------- 17.6/38.4 MB 1.2 MB/s eta 0:00:17
   ------------------ --------------------- 17.6/38.4 MB 1.2 MB/s eta 0:00:17
   ------------------ --------------------- 17.8/38.4 MB 1.2 MB/s eta 0:00:17
   ------------------ --------------------- 18.1/38.4 MB 1.2 MB/s eta 0:00:17
   ------------------- -------------------- 18.4/38.4 MB 1.2 MB/s eta 0:00:17
   ------------------- -------------------- 18.6/38.4 MB 1.2 MB/s eta 0:00:17
   ------------------- -------------------- 18.9/38.4 MB 1.2 MB/s eta 0:00:16
   ------------------- -------------------- 19.1/38.4 MB 1.2 MB/s eta 0:00:16
   -------------------- ------------------- 19.4/38.4 MB 1.2 MB/s eta 0:00:16
   -------------------- ------------------- 19.7/38.4 MB 1.2 MB/s eta 0:00:16
   -------------------- ------------------- 19.9/38.4 MB 1.2 MB/s eta 0:00:16
   --------------------- ------------------ 20.2/38.4 MB 1.2 MB/s eta 0:00:15
   --------------------- ------------------ 20.4/38.4 MB 1.2 MB/s eta 0:00:15
   --------------------- ------------------ 20.7/38.4 MB 1.2 MB/s eta 0:00:15
   --------------------- ------------------ 20.7/38.4 MB 1.2 MB/s eta 0:00:15
   ---------------------- ----------------- 21.2/38.4 MB 1.2 MB/s eta 0:00:15
   ---------------------- ----------------- 21.5/38.4 MB 1.2 MB/s eta 0:00:14
   ---------------------- ----------------- 21.5/38.4 MB 1.2 MB/s eta 0:00:14
   ---------------------- ----------------- 22.0/38.4 MB 1.2 MB/s eta 0:00:14
   ----------------------- ---------------- 22.3/38.4 MB 1.2 MB/s eta 0:00:14
   ----------------------- ---------------- 22.5/38.4 MB 1.2 MB/s eta 0:00:13
   ----------------------- ---------------- 22.5/38.4 MB 1.2 MB/s eta 0:00:13
   ----------------------- ---------------- 22.8/38.4 MB 1.2 MB/s eta 0:00:13
   ------------------------ --------------- 23.3/38.4 MB 1.2 MB/s eta 0:00:13
   ------------------------ --------------- 23.6/38.4 MB 1.2 MB/s eta 0:00:13
   ------------------------ --------------- 23.9/38.4 MB 1.2 MB/s eta 0:00:12
   ------------------------ --------------- 23.9/38.4 MB 1.2 MB/s eta 0:00:12
   ------------------------- -------------- 24.4/38.4 MB 1.2 MB/s eta 0:00:12
   ------------------------- -------------- 24.6/38.4 MB 1.2 MB/s eta 0:00:12
   ------------------------- -------------- 24.9/38.4 MB 1.2 MB/s eta 0:00:12
   ------------------------- -------------- 24.9/38.4 MB 1.2 MB/s eta 0:00:12
   -------------------------- ------------- 25.2/38.4 MB 1.2 MB/s eta 0:00:11
   -------------------------- ------------- 25.4/38.4 MB 1.2 MB/s eta 0:00:11
   -------------------------- ------------- 25.7/38.4 MB 1.2 MB/s eta 0:00:11
   -------------------------- ------------- 25.7/38.4 MB 1.2 MB/s eta 0:00:11
   --------------------------- ------------ 26.2/38.4 MB 1.2 MB/s eta 0:00:10
   --------------------------- ------------ 26.5/38.4 MB 1.2 MB/s eta 0:00:10
   --------------------------- ------------ 26.7/38.4 MB 1.2 MB/s eta 0:00:10
   ---------------------------- ----------- 27.0/38.4 MB 1.2 MB/s eta 0:00:10
   ---------------------------- ----------- 27.3/38.4 MB 1.2 MB/s eta 0:00:10
   ---------------------------- ----------- 27.5/38.4 MB 1.2 MB/s eta 0:00:09
   ---------------------------- ----------- 27.8/38.4 MB 1.2 MB/s eta 0:00:09
   ---------------------------- ----------- 27.8/38.4 MB 1.2 MB/s eta 0:00:09
   ----------------------------- ---------- 28.3/38.4 MB 1.2 MB/s eta 0:00:09
   ----------------------------- ---------- 28.6/38.4 MB 1.2 MB/s eta 0:00:09
   ----------------------------- ---------- 28.6/38.4 MB 1.2 MB/s eta 0:00:09
   ------------------------------ --------- 28.8/38.4 MB 1.2 MB/s eta 0:00:08
   ------------------------------ --------- 29.1/38.4 MB 1.2 MB/s eta 0:00:08
   ------------------------------ --------- 29.1/38.4 MB 1.2 MB/s eta 0:00:08
   ------------------------------ --------- 29.4/38.4 MB 1.2 MB/s eta 0:00:08
   ------------------------------ --------- 29.6/38.4 MB 1.2 MB/s eta 0:00:08
   ------------------------------ --------- 29.6/38.4 MB 1.2 MB/s eta 0:00:08
   ------------------------------- -------- 30.1/38.4 MB 1.2 MB/s eta 0:00:07
   ------------------------------- -------- 30.4/38.4 MB 1.2 MB/s eta 0:00:07
   ------------------------------- -------- 30.7/38.4 MB 1.2 MB/s eta 0:00:07
   -------------------------------- ------- 30.9/38.4 MB 1.2 MB/s eta 0:00:07
   -------------------------------- ------- 31.2/38.4 MB 1.2 MB/s eta 0:00:06
   -------------------------------- ------- 31.2/38.4 MB 1.2 MB/s eta 0:00:06
   -------------------------------- ------- 31.5/38.4 MB 1.2 MB/s eta 0:00:06
   --------------------------------- ------ 31.7/38.4 MB 1.2 MB/s eta 0:00:06
   --------------------------------- ------ 32.0/38.4 MB 1.2 MB/s eta 0:00:06
   --------------------------------- ------ 32.2/38.4 MB 1.2 MB/s eta 0:00:06
   --------------------------------- ------ 32.5/38.4 MB 1.2 MB/s eta 0:00:05
   ---------------------------------- ----- 32.8/38.4 MB 1.2 MB/s eta 0:00:05
   ---------------------------------- ----- 33.0/38.4 MB 1.2 MB/s eta 0:00:05
   ---------------------------------- ----- 33.3/38.4 MB 1.2 MB/s eta 0:00:05
   ---------------------------------- ----- 33.6/38.4 MB 1.2 MB/s eta 0:00:05
   ----------------------------------- ---- 33.8/38.4 MB 1.2 MB/s eta 0:00:04
   ----------------------------------- ---- 34.1/38.4 MB 1.2 MB/s eta 0:00:04
   ----------------------------------- ---- 34.3/38.4 MB 1.2 MB/s eta 0:00:04
   ------------------------------------ --- 34.6/38.4 MB 1.2 MB/s eta 0:00:04
   ------------------------------------ --- 34.9/38.4 MB 1.2 MB/s eta 0:00:03
   ------------------------------------ --- 34.9/38.4 MB 1.2 MB/s eta 0:00:03
   ------------------------------------ --- 35.1/38.4 MB 1.2 MB/s eta 0:00:03
   ------------------------------------ --- 35.1/38.4 MB 1.2 MB/s eta 0:00:03
   ------------------------------------- -- 35.7/38.4 MB 1.2 MB/s eta 0:00:03
   ------------------------------------- -- 35.9/38.4 MB 1.2 MB/s eta 0:00:03
   ------------------------------------- -- 35.9/38.4 MB 1.2 MB/s eta 0:00:03
   ------------------------------------- -- 36.4/38.4 MB 1.2 MB/s eta 0:00:02
   ------------------------------------- -- 36.4/38.4 MB 1.2 MB/s eta 0:00:02
   -------------------------------------- - 36.7/38.4 MB 1.2 MB/s eta 0:00:02
   -------------------------------------- - 37.2/38.4 MB 1.2 MB/s eta 0:00:02
   -------------------------------------- - 37.2/38.4 MB 1.2 MB/s eta 0:00:02
   ---------------------------------------  37.7/38.4 MB 1.2 MB/s eta 0:00:01
   ---------------------------------------  38.0/38.4 MB 1.2 MB/s eta 0:00:01
   ---------------------------------------  38.3/38.4 MB 1.2 MB/s eta 0:00:01
   ---------------------------------------- 38.4/38.4 MB 1.2 MB/s eta 0:00:00
Downloading threadpoolctl-3.6.0-py3-none-any.whl (18 kB)
Installing collected packages: threadpoolctl, scipy, joblib, scikit-learn

   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   ---------- ----------------------------- 1/4 [scipy]
   -------------------- ------------------- 2/4 [joblib]
   -------------------- ------------------- 2/4 [joblib]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ------------------------------ --------- 3/4 [scikit-learn]
   ---------------------------------------- 4/4 [scikit-learn]

Successfully installed joblib-1.5.1 scikit-learn-1.7.0 scipy-1.16.0 threadpoolctl-3.6.0
Note: you may need to restart the kernel to use updated packages.
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix
titanic = sns.load_dataset("titanic")
titanic.head()
survived pclass sex age sibsp parch fare embarked class who adult_male deck embark_town alive alone
0 0 3 male 22.0 1 0 7.2500 S Third man True NaN Southampton no False
1 1 1 female 38.0 1 0 71.2833 C First woman False C Cherbourg yes False
2 1 3 female 26.0 0 0 7.9250 S Third woman False NaN Southampton yes True
3 1 1 female 35.0 1 0 53.1000 S First woman False C Southampton yes False
4 0 3 male 35.0 0 0 8.0500 S Third man True NaN Southampton no True
titanic.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
 #   Column       Non-Null Count  Dtype   
---  ------       --------------  -----   
 0   survived     891 non-null    int64   
 1   pclass       891 non-null    int64   
 2   sex          891 non-null    object  
 3   age          714 non-null    float64 
 4   sibsp        891 non-null    int64   
 5   parch        891 non-null    int64   
 6   fare         891 non-null    float64 
 7   embarked     889 non-null    object  
 8   class        891 non-null    category
 9   who          891 non-null    object  
 10  adult_male   891 non-null    bool    
 11  deck         203 non-null    category
 12  embark_town  889 non-null    object  
 13  alive        891 non-null    object  
 14  alone        891 non-null    bool    
dtypes: bool(2), category(2), float64(2), int64(4), object(5)
memory usage: 80.7+ KB
titanic.isnull().sum()
survived         0
pclass           0
sex              0
age            177
sibsp            0
parch            0
fare             0
embarked         2
class            0
who              0
adult_male       0
deck           688
embark_town      2
alive            0
alone            0
dtype: int64
# Fill missing age values with the median
titanic["age"] = titanic["age"].fillna(titanic["age"].median())

# Check if there are still any missing values
titanic["age"].isnull().sum()
np.int64(0)
# Fill missing embarked values with mode
titanic["embarked"] = titanic["embarked"].fillna(titanic["embarked"].mode()[0])
# Convert categorical columns into numerical using one-hot encoding
titanic_encoded = pd.get_dummies(titanic, columns=["sex", "embarked", "pclass"], drop_first=True)
titanic_encoded.head()
survived age sibsp parch fare class who adult_male deck embark_town alive alone sex_male embarked_Q embarked_S pclass_2 pclass_3
0 0 22.0 1 0 7.2500 Third man True NaN Southampton no False True False True False True
1 1 38.0 1 0 71.2833 First woman False C Cherbourg yes False False False False False False
2 1 26.0 0 0 7.9250 Third woman False NaN Southampton yes True False False True False True
3 1 35.0 1 0 53.1000 First woman False C Southampton yes False False False True False False
4 0 35.0 0 0 8.0500 Third man True NaN Southampton no True True False True False True
# Optional: Drop columns that are not useful for prediction
titanic = titanic.drop(columns=["who", "adult_male", "deck", "embark_town", "alive", "class", "alone"], errors='ignore')

# Fill missing values
titanic["age"] = titanic["age"].fillna(titanic["age"].median())
titanic["fare"] = titanic["fare"].fillna(titanic["fare"].median())
titanic["embarked"] = titanic["embarked"].fillna(titanic["embarked"].mode()[0])

# Convert categorical columns to numeric
titanic_encoded = pd.get_dummies(titanic, columns=["sex", "embarked", "pclass"], drop_first=True)

# Define features and label
X = titanic_encoded.drop("survived", axis=1)
y = titanic_encoded["survived"]
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

from sklearn.linear_model import LogisticRegression

model = LogisticRegression(max_iter=200)
model.fit(X_train, y_train)
LogisticRegression(max_iter=200)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
# Predict on the test set
y_pred = model.predict(X_test)
from sklearn.metrics import accuracy_score

# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")
Accuracy: 0.80
from sklearn.metrics import classification_report

# Detailed performance report
print(classification_report(y_test, y_pred))
              precision    recall  f1-score   support

           0       0.81      0.86      0.83       105
           1       0.78      0.72      0.75        74

    accuracy                           0.80       179
   macro avg       0.80      0.79      0.79       179
weighted avg       0.80      0.80      0.80       179
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt

# Plot confusion matrix
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrix")
plt.show()

png

# Show feature importance
coefficients = pd.Series(model.coef_[0], index=X.columns)
coefficients.sort_values().plot(kind='barh', figsize=(10,6), title="Feature Impact on Survival")
plt.tight_layout()
plt.show()

png



Score: 15

Category: basics